[Home] [Veröffentlichungen] [Lebenslauf] [Forschung] [Gruppe] [News] [Links] [Stellen] [Impressum]
[english] [deutsch] [italiano] [português]

Dr. Andreas Götz: Publikationsliste

(auch als pdf Liste erhältlich, nicht immer aktualisiert)

(siehe auch meine Google Scholar Seite)

gehe zu: Artikel - Bücher - Buchbeiträge - Andere - Vorträge - Poster - Dissertation - Diplomarbeit

Artikel in wissenschaftlichen Zeitschriften
(79) Automated Force Field Developer and Optimizer Platform: Torsion Reparameterization.
A. Blanco-Gonzalez, W. Betancourt, R. Snyder, S. Zhang, , T. J. Giese, A. W. Götz, K. M. Merz, Jr., D. M. York, H. M. Aktulga, M. Manathunga.
ChemRxiv Preprint (2024). DOI: https://doi.org/10.26434/chemrxiv-2024-lcnx1
(78) Amber free energy tools: Interoperable software for free energy simulations using generalized quantum mechanical/molecular mechanical and machine learning potentials.
Y. Tao, T. J. Giese, S. Ekesan, J. Zheng, B. Aradi, B. Hourahine, H. M. Aktulga, A. W. Götz, K. M. Merz, Jr., D. M. York.
J. Chem. Phys. 160, 224104 (2024). DOI: https://doi.org/10.1063/5.0211276
(77) Molecular insights into chemical reactions at aqueous aerosol interfaces.
D. T. Limmer, A. W. Götz, T. H. Bertram, G. M. Nathanson.
Annu. Rev. Phys. Chem. 75 (2024), available online. DOI: https://doi.org/10.1146/annurev-physchem-083122-121620
arXiv Preprint (2023). DOI: 10.48550/arXiv.2306.13811
(76) Reaction Pathways, Proton Transfer, and Proton Pumping in ba3 Class Cytochrome c Oxidase: Perspectives from DFT Quantum Chemistry and Molecular Dynamics.
L. Noodleman, A. W. Götz, W.-G. Han Du, L. Hunsicker-Wang
Front. Chem. 11, 1186022 (2023). DOI: 10.3389/fchem.2023.1186022
(75) Geometry optimization: A comparison of different open-source geometry optimizers.
A. Shajan, M. Manathunga, A. W. Götz, K. M. Merz, Jr.
J. Chem. Theory Comput. 19, 7533-7541 (2023). DOI: 10.1021/acs.jctc.3c00188
ChemRxiv Preprint (2023). DOI: 10.26434/chemrxiv-2023-7r7qn-v2
(74) AmberTools.
D. A. Case et al. (47 co-authors).
J. Chem. Inf. Model. 63, 6183-6191 (2023). DOI: 10.1021/acs.jcim.3c01153
(73) Modeling electrodynamic interactions in Brownian dynamics simulations.
K. A .Thackston, M. Casebeer, D. D. Deheyn, A. W. Götz, D. F. Sievenpiper.
IEEE J. Electromagn. RF Microw. Med. 7, 176-181 (2023). DOI: 10.1109/JERM.2023.3246722
(72) Quantum Mechanics/Molecular Mechanics Simulations on NVIDIA and AMD Graphics Processing Units.
M. Manathunga, H. M. Aktulga, A. W. Götz, K. M. Merz, Jr.
J. Chem. Inf. Model. 63, 711-717 (2023). DOI: 10.1021/acs.jcim.2c01505
ChemRxiv Preprint (2022). DOI: 10.26434/chemrxiv-2022-x1z2l
(71) Effects of Microhydration on the Mechanisms of Hydrolysis and Cl- Substitution in Reactions of N2O5 and Seawater.
L. M. McCaslin, A. W. Götz, M. A. Johnson, R. B. Gerber.
ChemPhysChem 24, e202200819 (2023). 10.1002/cphc.202200819
(70) Computer-aided drug design, quantum-mechanical methods for biological problems.
M. Manathunga, A. W. Götz, K. M. Merz, Jr.
Curr. Opin. Struct. Biol. 75, 102417 (2022). DOI: 10.1016/j.sbi.2022.102417
(69) Uptake of N2O5 by Aqueous Aerosol Unveiled Using Chemically Accurate Many-Body Potentials.
V. W. D. Cruzeiro, M. Galib, D. T. Limmer, A. W. Götz.
Nat. Commun. 13, 1266 (2022). DOI: 10.1038/s41467-022-28697-8
ChemRxiv Preprint (2021). DOI: 10.33774/chemrxiv-2021-rcd1h
(68) DFT Calculations for Mössbauer Properties on Dinuclear Center Models of the Resting Oxidized Cytochrome c Oxidase.
W.-G. Han Du, A. W. Götz, L. Noodleman.
ChemPhysChem e202100831 (2022). DOI: 10.1002/cphc.202100831
(67) MB-Fit: Software Infrastructure for Data-Driven Many-Body Potential Energy Functions.
E. Bull-Vulpe, M. Riera, A. W. Götz, F. Paesani.
J. Chem. Phys. 155, 124801 (2021). DOI: 10.1063/5.0063198
ChemRxiv Preprint (2021). DOI: 10.33774/chemrxiv-2021-pjr3l
(66) Data for Molecular Dynamics Simulations of Escherichia Coli Cytochrome Bd Oxidase with the Amber Force Field.
S.-H. Ahn, C. Seitz, V. W. D. Cruzeiro, J. A. McCammon, A. W. Götz,
Data in Brief 38, 107401 (2021). DOI: 10.1016/j.dib.2021.107401
ChemRxiv Preprint (2021). DOI: 10.26434/chemrxiv.14488821.v1
(65) Open-Source Multi-GPU-Accelerated QM/MM Simulations with AMBER and QUICK.
V. W. D. Cruzeiro, M. Manathunga, K. M. Merz, Jr., A. W. Götz,
J. Chem. Inf. Model 61, 2109-2115 (2021). DOI: 10.1021/acs.jcim.1c00169
ChemRxiv Preprint (2021). DOI: 10.26434/chemrxiv.13984028.v1
(64) Harnessing the Power of Multi-GPU Acceleration into the Quantum Interaction Computational Kernel Program.
M. Manathunga, C. Jin, V. W. D. Cruzeiro, Y. Miao, D. Mu, K. Arumugam, K. Keipert, H. M. Aktulga, K. M. Merz, Jr., A. W. Götz,
J. Chem. Theory Comput. 17, 3955-3966 (2021). DOI: 10.1021/acs.jctc.1c00145
ChemRxiv Preprint (2021). DOI: 10.26434/chemrxiv.13769209.v1
(63) Highly Accurate Many-Body Potentials for Simulations of N2O5 in Water: Benchmarks, Development, and Validation.
V. W. D. Cruzeiro, E. Lambros, M. Riera, R. Roy, F. Paesani, A. W. Götz,
J. Chem. Theory Comput. 17, 3931-3945 (2021). DOI: 10.1021/acs.jctc.1c00069
ChemRxiv Preprint (2021). DOI: 10.26434/chemrxiv.13613678.v1
(62) Coupled transport of electrons and protons in a bacterial cytochrome c oxidase - DFT calculated properties compared to structures and spectroscopies.
L. Noodleman, W.-G. Han Du, D. McRee, Y. Chen, T. Goh, A. W. Götz,
Phys. Chem. Chem. Phys. 22, 26652-26668 (2020). DOI: 10.1039/d0cp04848h
(61) ReaxFF/AMBER - A framework for hybrid reactive/non-reactive force field molecular dynamics simulations.
A. Rahnamoun, M. C. Kaymak, M. Manathunga, A. W. Götz, A. C. T. van Duin, K. M. Merz, Jr., H. M. Aktulga,
J. Chem. Theory Comput. 16, 7645-7654 (2020). DOI: 10.1021/acs.jctc.0c00874
(60) Solvation Free Energies and Adsorption Energies at the Metal/Water Interface from Hybrid QM-MM Simulations.
P. Clabaut, B. Schweitzer, A. W. Götz, C. Michel, S. N. Steinmann,
J. Chem. Theory Comput. 16, 6539-6549 (2020). DOI: 10.1021/acs.jctc.0c00632
(59) Parallel Implementation of Density Functional Theory Methods in the Quantum Interaction Computational Kernel Program.
M. Manathunga, Y. Miao, D. Mu, A. W. Götz, K. M. Merz, Jr.,
J. Chem. Theory Comput. 16, 4315-4326 (2020). DOI: 10.1021/acs.jctc.0c00290
ChemRxiv Preprint (2020). DOI: 10.26434/chemrxiv.12018963
(58) A Water Molecule Residing in the Fea33+···CuB2+ Dinuclear Center of the Resting Oxidized as-Isolated Cytochrome c Oxidase: A Density Functional Study.
W.-G. Han Du, D. McRee, A. W. Götz, L. Noodleman,
Inorg. Chem. 59, 8906-8915 (2020). DOI: 10.1021/acs.inorgchem.0c00724
(57) NWChem: Past, Present, and Future.
E. Aprà et al. (114 co-authors),
J. Chem. Phys. 152, 184102 (2020). DOI: 10.1063/5.0004997
(56) DFT Fea3-O/O-O vibrational frequency calculations over catalytic reaction cycle states in the dinuclear center of cytochrome c oxidase.
W.G. Han Du, A. W. Götz, L. Noodleman,
Inorg. Chem. 58, 13933-13944 (2019). DOI: 10.1021/acs.inorgchem.9b01840
(55) Low-order many-body interactions determine the local structure of liquid water.
M. Riera, E. Lambros, T. T. Nguyen, A. W. Götz, F. Paesani,
Chem. Sci. 10, 8211-8218 (2019). DOI: 10.1039/C9SC03291F
(54) Van der Waals effects on structure and optical properties in organic photovoltaics.
A. W. Götz, J. I. Rodríguez, F. L. Castillo-Alvarado, D. E. Trujillo-González,
Int. J. Quantum Chem. 119, e25883 (2019). DOI: 10.1002/qua.25883
(53) Molecular QTAIM topology is sensitive to relativistic corrections.
J. S. M. Anderson, J. I. Rodríguez, P. Ayers, D. E. Trujillo-González, A. W. Götz, J. Autschbach, F. L. Castillo-Alvarado, K. Yamashita,
Chem. Eur. J. 25, 2538-2544 (2019). DOI: 10.1002/chem.201804464
(52) N2O5 at water surfaces: Binding forces, charge separation, energy accomodation and atmospheric implications.
B. Hirshberg, E. Rossich molina, A. W. Götz, A. Hammerich, G. Nathanson, T. H. Bertram, M. A. Johnson, R. B. Gerber,
Phys. Chem. Chem. Phys. 20, 17961-17976 (2018). DOI: 10.1039/c8cp03022g
(51) A force field for water over Pt(111): Development, assessment and comparison.
S. Steinmann, R. Ferreira de Morais, A. W. Götz, P. Fleurat-Lessard, M. Iannuzzi, P. Sautet, C. Michel,
J. Chem. Theory Comput. 14,3238-3251 (2018). DOI: 10.1021/acs.jctc.7b01177
(50) Comparison of permutationally invariant polynomials, neural networks, and Gaussian approximation potentials in representing water interactions through many-body expansions.
T. T. Nguyen, E. Székely, G. Imbalzano, J. Behler, G. Csányi, M. Ceriotti, A. W. Götz, F. Paesani,
J. Chem. Phys. 148, 241725 (2018). DOI: 10.1063/1.5024577, arxiv:1802.00564v1 (2018). https://arxiv.org/abs/1802.00564
(49) A water dimer shift activates a proton pumping pathway in the PR -> F transition of ba3 Cytochrome c oxidase.
W.-G. Han Du, A. W. Götz, L. Noodleman,
Inorg. Chem. 57, 1048-1059 (2017). DOI: 10.1021/acs.inorgchem.7b02461
(48) Effects of dispersion forces on structure and photoinduced charge separation in organic photovoltaics.
J. P. Martínez, D. E. Trujillo-González, A. W. Götz, F. L. Castillo-Alvarado, J. I. Rodríguez,
J. Phys. Chem. C 121, 20134-20140 (2017). DOI: 10.1021/acs.jpcc.7b05107
(47) Toward chemical accuracy in the description of ion-water interactions through many-body representations. Alkali-water dimer potential energy surfaces.
M. Riera, N. Mardirossian, P. Bajaj, A. W. Götz, F. Paesani,
J. Chem. Phys. 147, 161715 (2017). DOI: 10.1063/1.4993213
(46) Molecular mechanics models for the image charge, a comment on "Including image charge effects in the molecular dynamics simulations of molecules on metal surfaces".
S. N. Steinmann, P. Fleurat-Lessard, A. W. Götz, C. Michel, R. Ferreira De Morais, P. Sautet,
J. Comput. Chem. 38, 2127-2129 (2017). DOI: 10.1002/jcc.24861
(45) Monitoring water clusters "melt" through vibrational spectroscopy.
S. E. Brown, A. W. Götz, X. Cheng, R. P. Steele, V. A. Mandelshtam, F. Paesani,
J. Am. Chem. Soc. 139, 7082-7088 (2017). DOI: 10.1021/jacs.7b03143
(44) Combined quantum-mechanical molecular mechanics calculations with NWChem and AMBER: Excited state properties of green fluorescent protein chromophore in aqueous solution.
T. Pirojsirikul, A. W. Götz, J. Weare, R. C. Walker, K. Kowalski, M. Valiev
J. Comput. Chem. 38, 1631-1639 (2017). DOI: 10.1002/jcc.24804
(43) Analytical gradients for subsystem-DFT within the Slater-function-based Amsterdam Density Functional program.
D. Schlüns, M. Franchini, A. W. Götz, J. Neugebauer, C. R. Jacob, L. Visscher
J. Comput. Chem. 38, 238-249 (2017). DOI: 10.1002/jcc.24670
(42) Relativistic (SR-ZORA) quantum theory of atoms in molecules (QTAIM) properties.
J. S. M. Anderson, J. I. Rodríguez, P. W. Ayers, A. W. Götz,
J. Comput. Chem. 38, 81-86 (2017). DOI: 10.1002/jcc.24520
(41) On the accuracy of the MB-pol many-body potential for water: Interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice.
S. K. Reddy, S. C. Straight, P. Bajaj, C. H. Pham, M. Riera, D. R. Moberg, M. A. Morales, C. Knight, A. W. Götz, F. Paesani
J. Chem. Phys. 145, 194504 (2016). DOI: 10.1063/1.4967719
(40) i-TTM Model for ab initio-based ion-water interaction potentials. II. Alkali metal ion-water potential energy functions.
M. Riera, A. W. Götz, F. Paesani,
Phys. Chem. Chem. Phys. 18, 30334-30343 (2016). DOI: 10.1039/C6CP02553F
(39) Data for molecular dynamics simulations of B-type Cytochrome c oxidase with the Amber force field.
L. Yang, A. A. Skjevik, W.-G. Han Du, L. Noodleman, R. C. Walker, A. W. Götz,
Data in Brief 8, 1209-1214 (2016). DOI: 10.1016/j.dib.2016.07.043
(38) Water exit pathways and proton pumping mechanism in B-type Cytochrome c oxidase from molecular dynamics simulations.
L. Yang, A. A. Skjevik, W.-G. Han Du, L. Noodleman, R. C. Walker, A. W. Götz,
BBA, Bioenergetics 1857, 1594-1606 (2016). DOI: 10.1016/j.bbabio.2016.06.005
(37) Toward chemical accuracy in the description of ion-water interactions through many-body representations. I. Halide-water dimer potential energy surfaces.
P. Bajaj, A. W. Götz, F. Paesani,
J. Chem. Theory Comput. 12, 2698-2705 (2016). DOI: 10.1021/acs.jctc.6b00302
(36) A broken-symmetry density functional study of structure, energies, and protonation states along the catalytic O-O bond cleavage pathway in ba3 cytochrome c oxidase from thermus thermophilus.
W. Han Du, A. W. Götz, L. Yang, R. C. Walker, L. Noodleman,
Phys. Chem. Chem. Phys. 18, 21162-21171 (2016). DOI: 10.1039/C6CP00349D
(35) A QTAIM topological analysis of the P3HT-PCBM dimer.
J. I. Rodríguez, C. F. Matta, E. A. Uribe, B. Molina-Brito, F. L. Castillo-Alvarado, A. W. Götz,
Chem. Phys. Lett. 644, 157-162 (2016). DOI: 10.1016/j.cplett.2015.11.052
(34) On the representation of many-body interactions in water.
G. R. Medders, A. W. Götz, M. A. Morales, P. Bajaj, F. Paesani,
J. Chem. Phys. 143, 104102 (2015). DOI: 10.1063/1.4930194
(33) Cisplatin inhibits MEK1/2.
T. Yamamoto, I. Tsigelny, A. W. Götz, S. B. Howell,
Oncotarget 6, 23510-23522 (2015). DOI: 10.18632/oncotarget.4355
(32) Electronic structure of Ni2E2 complexes (E = S, Se, Te) and a global analysis of M2E2 compounds: a case for quantized E2n- oxidation levels with n = 2, 3, or 4.
S. A. Yao, V. Martin-Diaconescu, I. Infante, K. M. Lancaster, A. W. Götz, S. DeBeer, J. F. Berry,
J. Am. Chem. Soc. 137, 4993-5011 (2015). DOI: 10.1021/ja511607j
(31) The adaptive buffered force QM/MM method in the CP2K and AMBER software packages.
L. Mones, A. Jones, A. W. Götz, T. Laino, R. Walker, B. Leimkuhler, G. Csányi, N. Bernstein,
J. Comput. Chem. 36, 633-648 (2015). DOI: 10.1002/jcc.23839
(30) Structural and electronic properties of the P3HT-PCBM dimer: A theoretical study
I. Gutiérrez-González, B. Molina-Brito, A. W. Götz, F. L. Castillo-Alvarado, J. I. Rodríguez,
Chem. Phys. Lett. 612, 234-239 (2014). DOI: 10.1016/j.cplett.2014.08.030
(29) Linking chemical electron-proton transfer to proton pumping in cytochrome c oxidase: Broken symmetry DFT exploration of intermediates along the catalytic reaction pathway of the iron-copper dinuclear complex.
L. Noodleman, W. Han Du, J. Fee, A. W. Götz, R. C. Walker,
Inorg. Chem. 53, 6458-6472 (2014). DOI: 10.1021/ic500363h
(28) Dipeptide aggregation in in aqueous solution from fixed point-charge force fields.
A. W. Götz, D. Bucher, S. Lindert, J. A. McCammon,
J. Chem. Theory Comput. 10, 1631-1637 (2014). DOI: 10.1021/ct401049q
(27) Calculation of nuclear spin-spin coupling constants using frozen density embedding.
A. W. Götz, J. Autschbach, L. Visscher,
J. Chem. Phys. 140, 104107 (2014). DOI: 10.1063/1.4864053
(26) The mechanism of cellulose hydrolysis by a two-step, retaining cellobiohydrolase elucidated by structural and transition path sampling studies.
B. C. Knott, M. Haddad Momeni, M. F. Crowley, L. F. Mackenzie, A. W. Götz, M. Sandgren, S. G. Withers, J. Stahlberg, G. T. Beckham,
J. Am. Chem. Soc. 136, 321-329 (2014). DOI: 10.1021/ja410291u
(25) An extensible interface for QM/MM molecular dynamics simulations with AMBER
A. W. Götz, M. A. Clark, R. C. Walker,
J. Comput. Chem. 35, 95-108 (2014). DOI: 10.1002/jcc.23444
(24) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald
R. Salomon-Ferrer, A. W. Götz, D. Poole, S. Le Grand, R. C. Walker,
J. Chem. Theory Comput. 9, 3878-3888 (2013). DOI: 10.1021/ct400314y
(23) Bond Energy Decomposition Analysis for Subsystem Density Functional Theory.
S. M. Beyhan, A. W. Götz, L. Visscher,
J. Chem. Phys. 138, 094113 (2013). DOI: 10.1063/1.4793629
(22) SPFP: Speed without compromise - a mixed precision model for GPU accelerated molecular dynamics simulations.
S. Le Grand, A. W. Götz, R. C. Walker,
Comput. Phys. Commun. 184, 374-380 (2013). DOI: 10.1016/j.cpc.2012.09.022
(21) Electronic Absorption Spectra from MM and ab initio QM/MM Molecular Dynamics: Environmental Effects on the Absorption Spectrum of Photoactive Yellow Protein.
C. M. Isborn , A. W. Götz , M. A. Clark , R.C. Walker, T. J. Martínez,
J. Chem. Theory Comput. 8, 5092-5106 (2012). DOI: 10.1021/ct3006826
(20) Application of adaptive QM/MM methods to molecular dynamics simulations of aqueous systems.
K. Park, A. W. Götz, R. C. Walker, F. Paesani,
J. Chem. Theory Comput. 8 2868-2877 (2012). DOI: 10.1021/ct300331f
(19) X-Ray Absorption Spectroscopic, Crystallographic, Theoretical (DFT) and Chemical Evidence for a Chalcogen-Chalcogen Two Center/Three Electron Half Bond In an Unprecedented "Subselenide" Se23- Ligand.
S. A. Yao, K. M. Lancaster, A. W. Götz, S. DeBeer, J. F. Berry,
Chem. Eur. J. 18 9179-9183 (2012). DOI: 10.1002/chem.201201291
(18) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized Born.
A. W. Götz, M. J. Williamson, D. Xu, D. Poole, S. Le Grand, R. C. Walker,
J. Chem. Theory Comput. 8, 1542-1555 (2012). DOI: 10.1021/ct200909j
(17) PyADF - A scripting framework for multiscale quantum chemistry.
C. R. Jacob, S. M. Beyhan, R. E. Bulo, A. S. P. Gomes, A. W. Götz, K. Kiewisch, J. Sikkema, L. Visscher,
J. Comp. Chem. 32, 2328-2338 (2011). DOI: 10.1002/jcc.21810
(16) Computational Study on the Anomalous Fluorescence Behavior of Isoflavones.
S. M. Beyhan, A. W. Götz, L. Visscher, F. Ariese, C. Gooijer,
J. Phys. Chem. A 115, 1493--1499 (2011). DOI: 10.1021/jp109059e
(15) Density-functional theory with orbital-dependent functionals.
A. Görling, A. Ipatov, A. W. Götz, A. Heßelmann,
Z. Phys. Chem. 224, 325-342 (2010). DOI: 10.1524/zpch.2010.6108
(14) The weak covalent bond in NgAuF (Ng=Ar, Kr, Xe): a challenge for subsystem density functional theory.
S. M. Beyhan, A. W. Götz, C. R. Jacob, L. Visscher,
J. Chem. Phys. 132, 044114 (2010). DOI: 10.1063/1.3297886
(13) Performance of kinetic energy functionals for interaction energies in a subsystem formulation of density functional theory.
A. W. Götz, S. M. Beyhan, L. Visscher,
J. Chem. Theory Comput. 5, 3161-3174 (2009). DOI: 10.1021/ct9001784
(12) Virial theorem in the Kohn-Sham DFT formalism: accurate calculation of the atomic QTAIM energies.
J. I. Rodríguez, P. W. Ayers, A. W. Götz, F. L. Castillo-Alvarado,
J. Chem. Phys. 131, 021101 (2009). DOI: 10.1063/1.3160670
(11) Suitability of III-V [XH4][YH4] materials for hydrogen storage: A density functional study.
F. Zuliani, A. W. Götz, C. F. Guerra, E. J. Baerends,
Phys. Rev. B 79, 165106 (2009). DOI: 10.1103/PhysRevB.79.165106
(10) A high performance grid-based algorithm for computing QTAIM properties.
J. I. Rodríguez, R. F. W. Bader, P. W. Ayers, C. Michel, A. W. Götz, C. Bo,
Chem. Phys. Lett. 472, 149-152 (2009). DOI: 10.1016/j.cplett.2009.02.081
(9) Numerically stable optimized effective potential method with balanced Gaussian basis sets.
A. Heßelmann, A. W. Götz, F. Della Salla, A. Görling,
J. Chem. Phys. 127, 054102 (2007). DOI: 10.1063/1.2751159
(8) An indirect approach to the determination of the nuclear quadrupole moment by four-component relativistic DFT in molecular calculations.
L. Belpassi, F. Tarantelli, A. Sgamellotti, A. W. Götz, L. Visscher,
Chem. Phys. Lett. 442, 233-237 (2007). DOI: 10.1016/j.cplett.2007.05.108
(7) Alternative Synthesis, Density Functional Calculations and Proton Reactivity Study of a Trinuclear [NiFe] Hydrogenase Model Compound.
F. Lauderbach, R. Prakash, A. W. Götz, M. Munoz, F. W. Heinemann, U. Nickel, B. A. Hess, D. Sellmann,
Eur. J. Inorg. Chem. 21, 3385-3393 (2007). DOI: 10.1002/ejic.200601077
(6) Hydrazine Nitrosation of a Metal Bound Nitric Oxide: Structural Evidence for the Formation of an Ammine Complex.
R. Prakash, A. W. Götz, F. W. Heinemann, A. Görling, D. Sellmann,
Inorg. Chem. 45, 4661-4667 (2006). 10.1021/ic060096j
(5) Diastereoselective Synthesis of Arene Ruthenium(II) Complexes Containing Chiral Phosphetane-Based Tethers.
P. Pinto, A. W. Götz, G. Marconi, B. A. Hess, A. Marinetti, F. W. Heinemann, U. Zenneck,
Organometallics 25, 2607-2616 (2006). DOI: 10.1021/om050461z
(4) Optimization of auxiliary basis sets for the LEDO expansion and a projection technique for LEDO-DFT.
A. W. Götz, C. Kollmar, B. A. Hess,
J. Comput. Chem. 26, 1242-1253 (2005). DOI: 10.1002/jcc.20260
(3) Analytical gradients for LEDO-DFT.
A. W. Götz, C. Kollmar, B. A. Hess,
Molec. Phys. 103, 175-182 (2005). 10.1080/00268970512331316229
(2) A quantum chemical study on racemisation pathways in substituted chrysene derivatives.
C. Kind, A. W. Götz, B. A. Hess,
Chem. Eur. J. 9, 1610-1619 (2003). DOI: 10.1002/chem.200390185
(1) Phthalic acid, a versatile building block in organic-organometallic crystal engineering.
D. Braga, A. Angeloni, L. Maini, A. W. Götz, F. Grepioni,
New J. Chem. 23, 17-24 (1999). DOI: 10.1039/a806501b

Bücher (back to top)
(1) Electronic Structure Calculations on Graphics Processing Units - From Quantum Chemistry to Condensed Matter Physics.
R. C. Walker, A. W. Götz (Hrsg.)
Wiley (2016), ISBN 978-1-118-66178-9

Buchbeiträge (zurück nach oben)
(5) Structure, Electronic, and Charge Transfer Properties of Organic Photovoltaics from Density Functional Theory Methods.
Juan I. Rodrígez, A. W. Götz
in Development of Solar Cells, Challenges and Advances in Computational Chemistry and Physics 32, Hrsg. J. K. Roy, S. Kar, J. Leszczynski, Springer Nature Switzerland AG (2021), 3. Kapitel, Seite 57-79.
(4) Overview of Electronic Structure Methods.
A. W. Götz
in Electronic Structure Calculations on Graphics Processing Units, Hrsg. R. C. Walker, A. W. Götz, Wiley (2016), 3. Kapitel, Seite 39-65.
(3) GPUs: Hardware to Software.
P. Needham, A. W. Götz, R. C. Walker
in Electronic Structure Calculations on Graphics Processing Units, Hrsg. R. C. Walker, A. W. Götz, Wiley (2016), 2. Kapitel, Seite 23-37.
(2) Why graphics processing units?
P. Needham, A. W. Götz, R. C. Walker
in Electronic Structure Calculations on Graphics Processing Units, Hrsg. R. C. Walker, A. W. Götz, Wiley (2016), 1. Kapitel, Seite 1-21.
(1) Quantum chemistry on graphics processing units.
A. W. Götz, T. Wölfle, R. C. Walker
in Annual Reports in Computational Chemistry, Hrsg. R. A. Wheeler, Band 6, Elsevier (2010), 2. Kapitel, Seite 21-35.

Andere (back to top)
(3) Developing a Best Practices Training Program in Cyberinfrastructure-Enabled Machine Learning Research.
M. P. Thomas, A. W. Goetz, M. C. Kandes, M. Nguyen, P. Rodriguez, P. W. Rose, R. S. Sinkovits
in Practice and Experience in Advanced Research Computing (PEARC 23), Association for Computing Machinery, pp 390-394. DOI: 10.1145/3569951.3597543
(2) Parallel implementation of machine learning-based many-body potentials on CPU and GPU.
Y. Zhai, N. Danandeh, Z. Tan, S. Gao, F. Paesani, A. W. Goetz
in SC 18: The International Conference for High Performance Computing, Networking, Storage and Analysis. Proceedings of ACM Conference (SC'18), ACM, New York, NY, USA.
(1) Developing improved MD and QMMM codes for modeling enzymes essential to biomass liquid fuel production.
M. J. Williamson, A. W. Götz, 1 M. K. Garrahan, E. H. Knoll, C.L. Brooks III, R. C. Walker, and M. F. Crowley
in Proceedings of the 2010 Scientific Discovery through Advanced Computing (SciDAC) Conference, Chattanooga, Tennessee, July 11-15, 2010, Oak Ridge National Laboratory, Seite 306-311.

Vorträge (zurück nach oben)
(79) GPU accelerated QM/MM molecular dynamics simulations of biomolecular systems.
VII Colloquium on Computational Simulation in Sciences (Virtual), National Autonomous University of Mexico, Ensenada, Mexico
30. August 2024.
(78) GPU accelerated QM/MM molecular dynamics simulations of biomolecular systems.
266th ACS National Meeting, Denver, CO, USA
19. August 2024.
(77) Powering Amber molecular dynamics simulations on GPUs with SYCL.
The 12th International Workshop on OpenCL and SYCL (IWOCL 2024), Chicago, IL, USA
10. April 2024.
(76) Plenarvortrag: GPU accelerated QM/MM molecular dynamics simulations of biomolecular systems.
36th Molecular Modeling Workshop, Erlangen, Germany
4. März 2024.
(75) Updates on GPU accelerated QM and QM/MM simulations with QUICK and Amber/PMEMD SYCL development.
Amber Developer Meeting, Safety Harbor, FL, USA
1. März 2024.
(74) Powering Amber molecular dynamics simulations with oneAPI.
Tech talk am Intel Stand, The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC23), Denver, CO, USA
15. November 2023.
(73) QUICK: Free and open-source GPU-enabled quantum chemistry.
ACS Fall 2023 National Meeting, San Francisco, CA, USA
13. August 2023.
(72) Computational Chemistry in the Age of Exascale Computing.
CanBIC-8; 8th Georgian Bay International Conference on Bioinorganic Chemistry, Parry Sound, ON, Kanada
24. Mai 2023.
(71) Porting Amber to SYCL - A brief overview.
Intel oneAPI SYCL workshop, San Diego Supercomputer Center (virtual)
15. Mai 2023.
(70) High-performance molecular simulations: MPI and GPU accelerated QM and QM/MM molecular dynamics with QUICK and Amber/PMEMD SYCL development.
Amber Developer Meeting, Safety Harbor, FL, USA
3. Mä 2023.
(69) New QM/MM developments in QUICK in Amber: From GPU performance to long-range electrostatics under periodic boundary conditions.
Amber Developer Meeting, Safety Harbor, FL, USA
3. Juni 2022.
(68) The remarkably rich interfacial chemistry of N2O5.
Center for Aerosol Impacts on Chemistry of the Environment (CAICE) Annual Meeting, San Diego, CA, USA
20. April 2022.
(67) Open source GPU-enabled ab initio QM/MM with QUICK/AMBER including long-range electrostatics.
261st ACS National Meeting, San Diego, CA, USA
22. März 2022.
(66) Uptake of N2O5 by aqueous aerosol unveiled using molecular simulations with chemically accurate many-body potentials.
261st ACS National Meeting, San Diego, CA, USA
20. Mä 2022.
(65) Atomistic insights into solvation of atmospheric gases at aqueous interfaces from molecular simulations with machine learning-based many-body potentials.
Pacifichem 2021 (virtual)
18. Dezember 2021.
(64) Efficient GPU enabled QM/MM calculations: AMBER coupled with QUICK.
Pacifichem 2021 (virtual)
17. Dezember 2021.
(63) QUICK in Amber: MPI parallel and GPU accelerated ab initio quantum chemistry and QM/MM molecular dynamics.
Amber Developer Meeting (virtual)
19. Februar 2021.
(62) Insights into aqueous solvation of atmospheric gases from molecular simulations with machine learning-based many-body potentials.
259th ACS National Meeting, Philadelphia, USA,
März 2020. (online meeting due to Covid-19) DOI: 10.1021/scimeetings.0c04861
(61) An overview of current QM/MM developments in Amber.
Amber Developer Meeting, Safety Harbor, FL, USA,
7. Februar 2020.
(60) Quantum mechanics, machine learning, and realistic molecular simulations.
San Diego Supercomputer Center, Genereal Staff Meeting,
12. Juni 2019.
(59) Insights into proton uptake and vibrational spectra in cytochrome c oxidase from DFT calculations.
CanBIC-7; 7th Georgian Bay International Conference on Bioinorganic Chemistry, Parry Sound, ON, Kanada
22. May 2019.
(58) QM/MM in Amber: The past, the present, the future.
257th ACS National Meeting, Orlando, FL, USA,
3. April 2019.
(57) Extensions to QM/MM capabilities in Amber.
Amber Developer Meeting, Safety Harbor, FL, USA,
29. März 2019.
(56) From quantum mechanics to data-driven many-body models for molecular simulations.
UCSD - Osaka University Workshop, UC San Diego, San Diego, CA, USA
15. März 2019.
(55) From quantum mechanics and data science to molecular simulations.
Lenovo University AI Challenge Finalist, Supercomputing 18 conference, Dallas, TX, USA
14. November 2018.
(54) Machine learning of many-body potentials for accurate molecular simulations.
Theoretische Chemie / Computer Chemie Centrum Seminar, Universität Erlangen-Nürnberg,
15. Oktober 2018.
(53) Automated Machine learning of many-body potentials for accurate molecular simulations.
256th ACS National Meeting, Boston, MA, USA,
21. August 2018.
(52) Insights into oxygen activation and proton pumping of cytochrome c oxidase from DFT and molecular dynamics.
28th Canadian Symposium on Theoretical and Computational Chemistry (CSTSS), Windsor, ON, Canada,
19. Juli 2018.
(51) Machine learning of many-body potentials for accurate molecular simulations.
TSRC workshop "Many-body interactions: from quantum mechanics to force fields", Telluride, CO, USA,
9. Juli 2018.
(50) Insights into the aqueous solvation of N2O5 from computer simulations.
CAICE Annual Meeting, San Diego, CA, USA,
19. Mai 2018.
(49) Method and software development at SDSC - From QM/MM to machine-learning based many-body potentials.
ADF developer meeting, VU University, Amsterdam, The Netherlands,
28. März 2018.
(48) Updates on QM/MM methods, the GAL17 force field, and the new CMake build system.
AMBER developer meeting, Safety Harbor, FL, USA,
10. Februar 2018.
(47) A force field for water over Pt(111).
Plenary talk at the 50th Anniversary Symposium of the Solid State Physics Department, Instituto Politécnico Nacional, México (D.F.), México,
16. August 2017.
(46) New Insights into structure and function of a cytochrome c oxidase from computer simulations.
CanBIC-6; 6th Georgian Bay International Conference on Bioinorganic Chemistry, Parry Sound, ON, Canada,
24. Mai 2017.
(45) Force field development for water interacting with Pt surfaces.
ACS National Meeting, San Francisco, CA, USA,
6. April 2017.
(44) New CMake build system and QM/MM updates to Amber.
AMBER developer meeting, University of Georgia, Athens, GA, USA,
15. Februar 2017.
(43) Insights into structure and function of cytochrome c oxidase from computer simulations.
Ecole Normale Supérieure de Lyon, France,
10. November 2016.
(42) Insights into structure and mechanism of cytochrome c oxidase from computer simulations.
9th International Conference on Porphyrins and Phthalocyanins (ICPP-9), Nanjing, China,
4. Juli 2016.
(41) New force fields and QM/MM approaches in AMBER.
AMBER developer meeting, University of California San Diego, La Jolla, CA, USA,
18. März 2016.
(40) DFT and molecular dynamics for oxygen activation and proton pumping in the catalytic cycle of cytochrome c oxidase.
251st ACS National Meeting, San Diego, CA, USA, (vorgetragen von Louis Noodelman)
13. März 2016.
(39) Advancing molecular simulation - From GPU acceleration in classical MD to adaptive QM/MM approaches.
Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, México (D.F.), México,
27. November 2015.
(38) Scientific computing at SDSC - From hardware through software to scientific discovery.
Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, México (D.F.), México,
25. November 2015.
(37) Quantum chemistry and molecular dynamics of electron/proton transfer in B-type cytochrome c oxidase.
CanBIC-5: 5th Georgian Bay International Conference on Bioinorganic Chemistry, Parry Sound, ON, Canada,
20. Mai 2015.
(36) QM/MM developments in AMBER.
AMBER developer meeting, University of Florida, Gainesville, FL, USA,
14. Februar 2015.
(35) Advancing molecular simulation - From GPU acceleration in classical MD to adaptive QM/MM approaches.
National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge (TN), USA,
30. Juli 2014.
(34) QM/MM developments in AMBER.
AMBER developer meeting, Stony Brook University, Stony Brook, NY, USA,
16. Januar 2014.
(33) Taking molecular simulation to 11 - tales of classical and QM/MM MD.
Workshop "High-Performance Tensor Software for Scientific Computing", Laguna Beach (CA), USA,
9. Dezember 2013.
(32) Carbon footprint of molecular dynamics simulations.
SDSC CUDA on Campus GPU Symposium, UCSD, La Jolla (CA), USA,
5. November 2013.
(31) From QM/MM to adaptive solvent QM/MM molecular dynamics.
DFT-based multilayer methods for nanoscale systems workshop, Lorentz Center, Leiden, Niederlande,
22. August 2013.
(30) Quantum chemical studies of electron coupled proton transfer in B-type cytochrome c oxidases.
AAAS Pacific Division 94th Annual Meeting, Las Vegas (NV), USA,
17. June 2013.
(29) Quantum chemical studies of electron coupled proton transfer in B-type cytochrome c oxidases.
CanBIC-4: 4th Georgian Bay International Conference on Bioinorganic Chemistry, Parry Sound, ON, Canada,
22. Mai 2013.
(28) Merits of adaptive multiscale QM/MM approaches.
245th ACS National Meeting, New Orleans, LA, USA,
7. April 2013.
(27) QM/MM developments in AMBER.
AMBER developer meeting, University of Utah, Salt Lake City, UT, USA,
11. März 2013.
(26) Recent QM/MM developments in the AMBER MD software: From new Hamiltonians to adaptive solvent methods.
Theoretische Chemie / Computer Chemie Centrum Seminar, Universität Erlangen, Deutschland,
02. Juli 2012.
(25) Ab initio QM/MM molecular dynamics with AMBER and TeraChem:
Exploring environmental effects on the absorption spectrum of photoactive yellow protein.

AAAS Pacific Division 93rd annual meeting, Boise, ID, USA,
27. Juni 2012.
(24) Insights into reactions in aqueous solution from adaptive QM/MM simulations with AMBER.
243rd ACS National Meeting, San Diego, CA, USA,
28. März 2012.
(23) New QM/MM capabilities of the AMBER MD package: From new Hamiltonians to adaptive solvent methods.
Ecole Normale Supérieure de Lyon, Frankreich,
16. Februar 2012.
(22) New QM/MM capabilities of the AMBER MD package: From new Hamiltonians to adaptive solvent methods.
Cambridge Cheminformatics Meeting, European Bioinformatics Institute, Hinxton England,
08. Februar 2012.
(21) Some QM/MM developments in AMBER.
AMBER developer meeting, Rutgers University, USA,
11. Januar, 2012.
(20) Advanced QM/MM approaches for MD simulations of biomolecules with AMBER.
Department of Chemistry, National University of Ireland Galway, Galway, Irland,
21. July 2011.
(19) Advanced QM and MM computational methods development in AMBER.
National Renewable Energy Laboratory, Golden (CO), USA,
23. Juni 2011.
(18) Adaptive solvent QM/MM MD simulations with AMBER. (pdf-file)
241st ACS National Meeting, Anaheim, CA, USA,
31. März 2011.
(17) QM/MM developments in AMBER.
AMBER developer meeting, Athens, GA, USA,
3. März 2011.
(16) Calculation of nuclear spin-spin coupling constants using subsystem density functional theory.
SDSC QC/MD seminar, San Diego Supercomputer Center, La Jolla, CA, USA,
28. Mai 2010.
(15) Calculation of nuclear spin-spin coupling constants using frozen-density embedding. (pdf-file)
239th ACS National Meeting, San Francisco, CA, USA,
24. März 2010.
(14) Novel approaches to QM/MM MD simulations of biomolecules: Recent developments within the AMBER MD package. (pdf-file)
239th ACS National Meeting, San Francisco, CA, USA,
22. März 2010.
(13) Subsystem approaches for simulations of complex molecular systems. (pdf-file)
Department of Chemistry, University of Minnesota, Minneapolis (MN), USA,
5. November 2009.
(12) Subsystem approaches for simulations of complex molecular systems.
Van `t Hoff Institute for Molecular Sciences, Universiteit van Amsterdam, Niederlande,
28. Oktober 2009.
(11) Solvent Shifts of NMR Spin-Spin Coupling Constants from Frozen-Density-Embedding. (pdf-file)
ACMM (Amsterdam Center for Multiscale Modeling) Symposium,
8. Januar 2009.
(10) Quantenchemische Modellierung von Grund- und angeregten Zuständen komplexer molekularer Systeme.
Heinrich-Heine Universität Düsseldorf,
28. August 2008.
(9) Subsystem Density Functional Theory. (pdf-file)
Theoretische Chemie / Computer Chemie Centrum Seminar, Universität Erlangen, Deutschland,
25. April 2008.
(8) Analytical Gradients in a Subsystem Formulation of Density Functional Theory. (pdf-file)
Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Niederlande,
19. October 2007.
(7) The Limited Expansion of Diatomic Overlap Density Functional Theory (LEDO-DFT). (pdf-file)
École Nationale Supérieure de Chimie Paris, Frankreich,
13. Februar 2006.
(6) Abstract Group Theory. (pdf-file)
Seminar zur Theoretischen Chemie, Universitä Erlangen, Deutschland,
22. April 2005.
(5) Development and implementation of algorithms for LEDO-DFT. (pdf-file)
Seminar zur Theoretischen Chemie, Universität Erlangen, Deutschland,
14. Februar 2005.
(4) Crystal Lattices. (pdf-file)
Seminar zur Theoretischen Chemie, Universität Erlangen, Deutschland,
26. November 2004.
(3) Recent advances in the implementation of LEDO-DFT. (pdf-file)
Seminar zur Theoretischen Chemie, Universität Erlangen, Deutschland,
11. November 2003.
(2) Auf der LEDO-Näherung basierender DFT-Formalismus: Turbomole-Implementierung
Seminar zur Theoretischen Chemie, Universität Erlangen, Deutschland,
8. Januar 2002.
(1) LEDO-DFT: A new approach for DFT-calculations on large systems.
Minisymposium des Graduiertenkollegs "Homogener und heterogener Elektronentransfer", Veilbronn, Deutschland,
9. November 2001.

Konferenzbeiträge (Poster) (zurück nach oben)
(45) K. M. Merz, Jr, H. M. Aktulga, A. W. Götz, D. M. York.
CSSI: Frameworks: Interoperable high-performance classical, machine learning and quantum free energy methds in AMBER
NSF CSSI PI Meeting, Charlotte, NC, USA, August 2024.
Poster und Abstract auf figshare (DOI: 10.6084/m9.figshare.26488039)
(44) M. Thomas, A. W. Götz, P. Rodriguez, R. Sinkovits, R. Wagner.
Training and Developing a Research Computing and Data CI Professionals (RCD-CIP) Community
NSF CyberTraining PI Meeting, Charlotte, NC, USA, August 2024.
(43) K. M. Merz, Jr, H. M. Aktulga, A. W. Götz, D. M. York.
CSSI: Frameworks: Interoperable high-performance classical, machine learning and quantum free energy methds in AMBER
NSF CSSI PI Meeting, Houston, TX, USA, September 2023.
Poster and abstract at figshare (DOI: 10.6084/m9.figshare.24217671)
(42) M. Thomas, A. W. Götz, P. Rodriguez, R. Sinkovits, R. Wagner.
Training and Developing a Research Computing and Data CI Professionals (RCD-CIP) Community
NSF CyberTraining PI Meeting, Houston, TX, USA, September 2023.
(41) M. Mahajan, A. W. Götz.
Molecular Dynamics Identifies Conformationally Flexible Domains in Full-Length Programmed Death Receptor-1
Mechanisms and Models of Cancer, 16th Annual Symposium, La Jolla, CA, USA, August 2023.
(40) K. M. Merz, Jr., A. W. Götz.
Efficient GPU Enabled QM/MM Calculations: AMBER Coupled with GPU Enabled QUICK
NSF CSSI PI Meeting, Alexandria, VA, USA, July 2022.
Poster and abstract at Zenodo (DOI: 10.5281/zenodo.6892753)
(39) C. M. Jernigan, C. H. Fite, A. W. Götz, C. Cappa, C. D. Holmes, T. H. Bertram.
The Role of Heterogeneous and Multiphase Chemistry of Hydroperoxymethyl Thioformate in the Conversion of Dimethyl Sulfide to Sulfate Aerosol
American Geophysical Union (AGU) Fall Meeting, New Orleans, LA, USA, December 2021.
Poster abstract
(38) V. W. D. Cruzeiro, R. Roy, A. W. Götz.
Developing accurate many-body potentials using machine learning for simulations of N2O5 and HOCl in water
259th ACS National Meeting, Philadelphia, USA, März 2020.
DOI: 10.1021/scimeetings.0c04819
(37) F. Paesani, A. W. Götz, A. Zonca.
SI2-SSE: Enabling Chemical Accuracy in Computer Simulations: An Integrated Software Platform for Many-Body Molecular Dynamics
NSF CSSI PI Meeting, Seattle, WA, USA, 14. Februar 2020.
Poster, Lightning slide
(36) K. M. Merz, Jr., A. W. Götz.
Efficient GPU Enabled QM/MM Calculations: AMBER Coupled with GPU Enabled QUICK
NSF CSSI PI Meeting, Seattle, WA, USA, 13. Februar 2020.
Poster, Lightning slide
(35) V. W. D. Cruzeiro, R. Roy, A. W. Götz.
Developing highly accurate many-body potentials using machine learning: applications to atmospheric chemistry
CAICE (Center for Aerosol Impact on Chemistry of the Environment) annual meeting, San Diego, CA, USA, 2. Oktober 2019.
(34) T. Goh, A. Fekete, W.-G. Han Du, Y. Chen, K. A. Hartfield, D. E. McRee, L. Noodleman, A. W. Götz.
Insights into proton uptake in cytochrome c oxidase from density functional theory calculations
258th ACS National Meeting, San Diego, CA, USA, 26. August 2019.
(33) E. Bull-Vulpe, K. R. Ganapathy, M. Riera, Y. Zhai, S. E. Brown, F. Paesani, A. W. Götz.
Automated machine learning of accurate many-body potentials for molecular simulations
258th ACS National Meeting, San Diego, CA, USA, 26. August 2019.
(32) Y. Zhai, N. Danandeh, Z. Tan, S. Gao, F. Paesani, A. W. Götz.
Parallel implementation of machine learning-based many-body potentials on CPU and GPU
Supercomputing 18, Dallas, TX, USA, 12.-15. November 2018.
(31) S. K. Reddy, E. Bull-Vulpe, R. Roy, A. Cheng, A. W. Götz.
Machine learning of many-body potentials for accurate simulations of atmospherically relevant molecular in aqueous environment: N2O5 and HOX
CAICE (Center for Aerosol Impact on Chemistry of the Environment) annual meeting, San Diego, CA, USA 5. November 2018.
(30) A. W. Götz, T. T. Nguyen, F. Paesani.
DFT à la carte - Many-body potentials from machine learning
256th ACS National Meeting, Boston, MA, USA, 21. August 2018.
(29) F. Paesani, A. W. Götz, A. Zonca.
Data-driven models for predictive molecular simulations
NSF SI2 meeting, Arlington, VA, USA 1. Mai 2018.
(28) L. Yang, A, A, Skjevik, W. Han Du, L. Noodleman, R. C. Walker, A. W. Götz.
Proton pumping and water exit pathway in B-type Cytochrome c Oxidase from Thermus Thermophilus
251st ACS National Meeting, San Diego, CA, USA, 16. März 2016.
(27) H. B. Mayes, B. C. Knott. M. F. Crowley, A. W. Götz, J. Stahlberg, L. J. Broadbelt, G. T. Beckham.
Unmasking the mystery base employed by the "T. Reesei" Cel6A cellulase
249th ACS National Meeting, Denver, CO, USA, 24. März 2015.
(26) P. D. Bello-Maldonado, A. W. Götz.
Performance optimization of multiscale QM/MM software for complex chemical systems
XSEDE 14, Atlanta (GA), USA, 16. Juli 2014.
(25) A. W. Götz, R. C. Walker.
GPU accelerated classical and ab initio (adaptive) QM/MM molecular dynamics with Amber
Workshop "High-Performance Tensor Software for Scientific Computing", Laguna Beach (CA), USA, 9. Dezember 2013.
(24) K. Tadimeti, A. W. Götz, R. C. Walker.
Carbon footprint of molecular dynamics simulations.
XSEDE 13, San Diego (CA), USA, 24. Juli 2013.
(23) R. Nori, A. W. Götz.
Studying the effect of numerical noise on molecular dynamics simulations of enzymes.
XSEDE 13, San Diego (CA), USA, 24. Juli 2013.
(22) M. A. Clark, A. W. Götz, R. C. Walker.
An extensible interface for ab initio QM/MM molecular dynamics simulations with Amber.
XSEDE 12, Chicago (IL), USA, 16.-20. Juli 2012.
(21) A. W. Götz, R. E. Bulo, R. C. Walker.
Adaptive Solvent QM/MM MD with AMBER. (pdf-file)
Gordon Research Conference on Computational Chemistry, Les Diablerets, Schweiz, 29. August - 3. September 2010.
(20) A. W. Götz, P. Torres Celis, L. Visscher.
Solvent Shifts on NMR Spin-Spin Coupling Constants from Frozen-Density-Embedding. (pdf-file)
NWO Symposium, Lunteren, Niederlanden, 26.-27. Januar 2009.
(19) S. M. Beyhan, A. W. Götz, C. R. Jacob, L. Visscher.
Assessment of approximate kinetic-energy functionals in the subsystem formulation of DFT applied to Ng-AuF (Ng: Ar, Kr, Xe).
NWO Symposium, Lunteren, The Niederlande, 26.-27. Januar, 2009.
(18) A. W. Götz, P. Torres Celis, L. Visscher.
Solvent Shifts on NMR Spin-Spin Coupling Constants from Frozen-Density-Embedding. (pdf-file)
HRSMC Symposium, VU Universität Amsterdam, Niederlande, 27. November 2008.
(17) S. M. Beyhan, A. W. Götz, C. R. Jacob, L. Visscher.
Assessment of approximate kinetic-energy functionals in the subsystem formulation of DFT applied to Ng-AuF (Ng: Ar, Kr, Xe).
HRSMC Symposium, VU Universität Amsterdam, Niederlande, 27. November 2008.
(16) A. W. Götz, C. R. Jacob, L. Visscher.
Analytical Gradients in a Subsystem Formulation of DFT (pdf-file)
NWO Symposium, Lunteren, Niederlande, 28.-29. Januar 2008.
(15) A. W. Götz, C. R. Jacob, L. Visscher.
Analytical Gradients in a Subsystem Formulation of DFT (pdf-file)
HRSMC Symposium, Universität Amsterdam, Niederlande, 22. November 2007.
(14) S. M. Beyhan, A. W. Götz, L. Visscher.
Theoretical Investigation of the Anomalous Stokes' Shifts in Isoflavones (pdf-file)
HRSMC Symposium, Universität Amsterdam, Niederlande, 22. November 2007.
(13) A. W. Götz, C. R. Jacob, L. Visscher.
Analytical Gradients in a Subsystem Formulation of DFT (pdf-file)
43. Symposium für Theoretische Chemie, Sarbrücken, 16.-20. September 2007.
(12) A. W. Götz, C. R. Jacob, L. Visscher.
Analytical Gradients in a Subsystem Formulation of DFT (pdf-file)
DFT 2007, Amsterdam, Niederlande, 26.-30. August 2007.
(11) S. M. Beyhan, A. W. Götz, L. Visscher.
Theoretical Investigation of the Anomalous Stokes' Shifts in Naturally Fluorescent Isoflavones
DFT 2007, Amsterdam, Niederlande, 26.-30. August 2007.
(10) A. W. Götz, A. Görling.
An Exact-Exchange Time-Dependent Density-Functional Method for Molecules (pdf-file)
DFG Schwerpunktsprogramm 1145 Symposium, Bad Herrenalb, 26.-28. Juni 2006.
(9) A. W. Götz, B. A. Hess.
On the Electronic Structure of a Novel Trinuclear [NiFe] Hydrogenase Model Complex. (png-file, pdf-file)
18th Darmstadt Molecular Modelling Workshop, Erlangen, 18.-19. Mai 2004.
(8) A. W. Götz, C. Kollmar, B. A. Hess.
LEDO-DFT: TURBOMOLE implementation. (png-file, pdf-file)
ESQC-03 (European Summerschool in Quantum Chemistry), Tjörnarp, Schweden, 17.-30. August 2003.
(7) A. W. Götz, C. Kollmar, B. A. Hess.
LEDO-DFT: TURBOMOLE implementation. (png-file, pdf-file)
XIth ICQC (International Congress of Quantum Chemistry), Bonn, 20.-26. Juli 2003.
(6) A. W. Götz, C. Kind, B. A. Hess.
A quantum chemical study on racemisation pathways in substituted chrysene derivatives. (png-file)
Winterschule "Large Molecules: Linear Scaling and Related Electronic Structure Calculation Methods", Helsinki, Finland, 9.-12. Dezember 2002.
(5) A. W. Götz, C. Kind, B. A. Hess.
A quantum chemical study on racemisation pathways in substituted chrysene derivatives. (png-file)
38. Symposium für Theoretische Chemie, Bremen, 25.-29. August 2002.
(4) A. W. Götz, C. Kind, B. A. Hess.
A quantum chemical study on racemisation pathways in substituted chrysene derivatives. (png-file)
Sommerschule "Molecular Physics & Quantum Chemistry", Oxford, England, 18.-23. August 2002.
(3) R. H. Puchta, A. W. Götz, V. Seitz, N. J. R. van Eikema Hommes, T. Clark, P. von Ragué Schleyer.
Proton Sponges: How Important is the Framework? - A DFT-Study.
Model(l)ing 2001, Erlangen, 17.-21. September 2001.
(2) R. H. Puchta, A. W. Götz, A. Fokin, N. J. R. van Eikema Hommes, P. von Ragué Schleyer.
Azacages as Proton Traps - a DFT-Study.
7th European Symposium on Organic Reactivity, Ulm, 22.-27. August 1999.
(1) A. W. Götz, R. H. Puchta, N. J. R. van Eikema Hommes.
DFT studies on Proton and Hydride Sponges.
Darmstädter Molecular-Modelling-Workshop, Darmstadt, 25.-26. Mai 1999.

Dissertation (zurück nach oben)
A. W. Götz. The Limited Expansion of Diatomic Overlap Density Functional Theory (LEDO-DFT): Development and Implementation of Algorithms, Optimization of Auxiliary Orbitals and Benchmark Calculations (2005). (eine pdf Version kann vom opus Server der Universität Erlangen heruntergeladen werden)

Diplomarbeit (zurück nach oben)
A. W. Götz. Implementierung eines vereinfachten Dichtefunktionalverfahrens (2001). (pdf)

letzte Änderung: 2024/09/11